
AZ's ResLib v2.1

1

ResLib v.2.1g
3-axis resolution routines for MatLab

Andrey Zheludev
Brookhaven National Laboratory

AZ's ResLib v2.1

2

INTRODUCTION ... 3

RESOLUTION CALCULATION .. 3

ResMat.m... 3

ResMatS.m... 4

MakeExp.m ... 5

CRYSTALLOGRAPHY CALCULATIONS UTILITY FUNCTIONS ... 5

star.m ... 5

scalar.m.. 6

modvec.m... 6

CONVOLUTION WITH RESOLUTION FUNCTION: GENERAL 4-D CONVOLUTION 7

ConvRes.m... 7

CONVOLUTION WITH RESOLUTION FUNCTION: SINGLE-MODE AND VOIGT PROFILES.... 9

ConvResSMA.m.. 10

LEAST-SQUARES FITTING OF CONVOLUTED CROSS SECTIONS 11

FitConv.m.. 11

FitConvSMA.m ... 12

GRAPHIC REPRESENTATIONS OF RESOLUTION ELLIPSOIDS .. 12

ResPlot3D.m.. 13

DOWNLOADS, PACKAGING AND INSTALLATION... 15

File download .. 15

Packaging: ... 15

Installation... 15

CREDITS ... 15

DISCLAIMER... 16

AZ's ResLib v2.1

3

Introduction
Perhaps the most important aspect of analyzing inelastic neutron scattering data measured using a 3-axis
spectrometer is properly taking into account the experimental resolution. Even though one is fairly
confident that the Gaussian approximation to the resolution function is accurate, the problem is still quite
non-trivial for the following reasons: 1) The parameter space is 4-dimensional (3 dimensions for the wave
vector transfer and one for energy transfer); 2) In many cases in the course of a single inelastic scan the
resolution function changes significantly from one point to the next; and 3) The width of the experimental
resolution is often larger than the size of characteristic features of the dynamic structure factor. In general,
to properly analyze experimental scans using a parameterized model cross section S(Q,ω,p), one needs to
1) be able to calculate the resolution function at each data point, given the spectrometer configuration and
sample parameters, 2) numerically convolute the theoretical cross section with this resolution function; and
3) fit the convoluted cross section to the data. The ResLib library is designed to accomplish these tasks.

Resolution calculation
ResLib is based on the Cooper-Nathans Gaussian approximation [1-3] for the resolution function, given by:

() () ()() ()

()zyx

0ij
j
0

ji
0

i4
00

'EE
q'kk

q,,q,qQ

QMQQQQ
2
1expQSQdQR

'dEd
d

0
0

ω=

�
�

�
�
�

� −−−≈ � � � �Ω
σ

ω=−
=−

�
�

����

�

��� (1)

qx and qy are components of the scattering vector in the (horizontal) scattering plane, and qz is the
component of the scattering vector along the vertical axis. Compared to the original Cooper-Nathans
formulas, we include the kf/ki factor into R0. R0 is normalized not to the incident flux on the first (in-pile)
collimator, but to the flux at monitor position (after second collimator). The resolution prefactor also
includes the effect of finite sample mosaic [2].
As an option, the prefactor R0 can include the effect of analyzer reflectivity. The effective reflectivity in
the Cooper-Nathans (Gaussian) model differs form the real reflectivity of the analyzer crystal. To
compensate for this effect, we correct R0 so that integral reflectivity of the effective Gaussian matches the
integral reflectivity of an ideal crystal. The reflectivity curve of an ideal crystal is taken from Ref. [4]. At E
< 5.5meV, where no parasitic (hkl) reflections reducing the reflected PG (002) intensity are present [5], this
approximation is valid for PG to within a few percent [6]. At higher final neutron energies the calculated
correction can not be considered valid, as the Shapiro-Chesser effects become important [5].
[1] M. J. Cooper & R. Nathans, Acta Cryst. 23, 357, (1967).
[2] S. A. Werner & R. Pynn, J. Appl. Phys. 42, 4736, (1971).
[3] N. J. Chesser & J. D. Axe, Acta Cryst. A29, 160, (1972).
[4] G. E. Bacon & R. D. Lowde, Acta Cryst. (1948).
[5] S. M. Shapiro, N. J. Chesser, Nucl.Instr.& Meth. (1972).
[6] T. Riste & K. Otnes, Nucl. Instr.& Meth. (1969); B. Dorner & A. Kollmar, J.Appl. Cryst. (1974).

ResMat.m
This function calculates the Cooper-Nathans resolution matrix M and the prefactor R0 for a coordinate
system defined by the scattering vector q: the x axis is chosen along ki-kf = q. The y axis is perpendicular
to q, in the scattering plane. y is clockwise from x, if the positive direction of motor 4 is clockwise, and
counter-clockwise from x otherwise.

function [R0,M]=ResMat(Q,W,EXP)

Input arguments:
• Q is the wave vector transfer in Å-1, and
• W is the energy transfer in meV.
• EXP is a structure that contains all the information on the experimental setup:

AZ's ResLib v2.1

4

• EXP.mono is a structure that describes the monochromator:
EXP.mono.tau is the monochromator reciprocal lattice vector in Å-1.
EXP.mono.mosaic is the monochromator mosaic in minutes of arc.

• EXP.ana is a structure that describes the analyzer:
EXP.ana.tau is the analyzer reciprocal lattice vector in Å-1.
EXP.ana.mosaic is the analyzer mosaic in minutes of arc.
EXP.ana.thickness is the analyzer thickness in cm for ideal-crystal reflectivity
corrections.
EXP.ana.Q is the kinematic reflectivity coefficient for this correction. It is given by

()
3

3

2
0

2
2

V
F

4Q
τ
π= , where V0 is the unit cell volume for the analyzer crystal, F is the

structure factor of the analyzer reflection, and τ is the analyzer reciprocal lattice vector.
For PG(002) Q~0.1287. Set EXP.ana.Q to a negative value if you don't want the
correction done.

• EXP.sample is a structure that describes the sample:
EXP.sample.mosaic is the sample mosaic in the scattering plane in minutes of arc.
EXP.sample.vmosaic is the vertical sample mosaic in minutes of arc.

• EXP.hcol(1:4) are the horizontal collimations in minutes of arc starting from the in-pile
collimator.

• EXP.vcol(1:4) are the vertical collimations in minutes of arc starting from the in-pile
collimator.

• EXP.efixed is the fixed incident or final neutron energy, in meV.
• EXP.infin is +1 if incident energy is fixed or -1 in a fixed-final setup.
• EXP.horifoc is <=0 for a standard 3-axis setup with a flat analyzer. Set this flag to 1 when

using a horizontally-focusing analyzer. In this case Exp.hcol(3) should be replaced by the
angular size of the analyzer, as seen from the sample position.

• EXP.dir1=1, if monochromator scattering direction is opposite to that of sample, and -1
otherwise.

• EXP.dir2=1, if analyzer scattering direction is opposite to that of sample, and -1 otherwise.

Output arguments:
• R0 is the Cooper-Nathans prefactor and M is a 4x4 resolution matrix.

Vectorization:
The function can be used to simultaneously calculate resolution matrixes for several scattering vectors,
energies, and experimental setups. The input arguments Q, W and EXP can be vectors of the same length
N, in which case R0 will be returned as a vector of length N and M will be a 4x4xN array. If some of the
input arguments are scalars, they will be automatically replicated into vectors of appropriate length.

Dependencies:
ResMat.m is a stand-alone function that does not rely on any other components in ResLib.

ResMatS.m

This function is very similar to ResMat.m, and calculates the Cooper-Nathans resolution matrix M and
the prefactor R0 for a coordinate system defined by the sample axes. The x axis is chosen along the first
user-defined orienting vector in the scattering plane. The y axis is in the scattering plane, perpendicular to
x, in the direction of the second user-defined orienting vector. The z axis completes a right-handed
coordinate system.

AZ's ResLib v2.1

5

function [R0,M]=ResMatS(H,K,W,L,EXP)

Input arguments:
• H, K and L specify the wave vector transfer in the scattering plane and are given in Reciprocal-lattice

units.
• W is the energy transfer in meV.
• EXP is a structure that contains all the information on the experimental setup. In addition to the fields

described above, it contains the following:
• EXP.sample.a is the a lattice constant in Å.
• EXP.sample.b is the b lattice constant in Å.
• EXP.sample.c is the c lattice constant in Å.
• EXP.sample.alpha is the a angle in degrees of arc.
• EXP.sample.beta is the b angle in degrees of arc.
• EXP.sample.gamma is the g angle in degrees of arc.
• EXP.orient1(1:3) are Miller indexes of the first orienting reciprocal-lattice vector in the

scattering plane.
• EXP.orient2(1:3) are Miller indexes of the second orienting reciprocal-lattice vector in the

scattering plane.

Output arguments and vectorization
Similar to those for ResMat.m.

Dependencies:
ResMatS.m requires ResMat.m, StandardSystem.m , star.m, scalar.m, modvec.m to
function properly.

MakeExp.m

This function is an example of creating the EXP structure for use with ResMat.m and ResMatS.m. The
user is encouraged to make copies of this m-file and edit them to generate particular experimental setups.
The function takes no arguments and returns a ResMatS-compatible structure EXP.

Crystallography calculations utility functions
ResLib contains several routines for crystallographic calculations "free of charge". These are star.m,
scalar.m and modvec.m. They are particularly useful in user-supplied cross section functions used
with ConvRes.m ans ConvResSMA.m (see below). All this stuff is explained in the International Tables
Of Crystallography, vol. C.

star.m
Given direct-space lattice parameters, this function calculates reciprocal-space lattice parameters (or vice-
versa).

function [V,Vstar,rlattice]=star(lattice)

Input arguments:
• lattice is a structure that contains direct-space lattice parameters (note the difference with the

structure EXP.sample described above!):
• lattice.a is the a lattice constant
• lattice.b is the b lattice constant
• lattice.c is the c lattice constant

AZ's ResLib v2.1

6

• lattice.alpha is the a angle in radians
• lattice.beata is the b angle in radians
• lattice.gamma is the g angle in radians

Output arguments:
V and Vstar are the direct and reciprocal unit cell volumes. rlattice has the same structure as lattice,
but contains reciprocated cell parameters.

Vectorization:
The function can be used to simultaneously reciprocate several sets of lattice parameters. For N
calculations each field of lattice should be a vector of length N or a scalar (if identical values are
assumed for a particular cell constant). V and Vstar and the fields of rlattice will then be vectors of
length N.

Dependencies:
star.m is a stand-alone function that does not rely on any other components in ResLib.

scalar.m
Calculate the scalar product of two vectors defined by their fractional cell coordinates. Alternatively,
calculates the scalar product of two reciprocal vectors defined by their Miller indexes.
function s=scalar(x1,y1,z1,x2,y2,z2,lattice)

Input arguments:
• lattice is as in star.m. It contnains all the lattice parametrs for this calculation. Alternatively, it

contains reciprocal-lattice parameters.
• x1, y1, z1 are fractional cell coordinates of the first vector. Alternatively, they define the Miller

indexes of the first reciprocal-lattice vector.
• x2, y2, z2 are fractional cell coordinates of the second vector. Alternatively, they define the

Miller indexes of the second reciprocal-lattice vector.

Output arguments:
The returned value is the scalar product of the two vectors.

Vectorization:
The function can be used to simultaneously calculate several scalar products. For N calculations, x1…z2
are vectors of length N or scalars. Correspondingly, each field of lattice should be a vector of length N
or a scalar. The returned value will be a vector of length N as well.

Dependencies:
scalar.m is a stand-alone function that does not rely on any other components in ResLib.

modvec.m
Calculate the length of a vector defined by its fractional cell coordinates. Alternatively, calculates the
length of reciprocal vector defined by its Miller indexes.

function m=modvec(x,y,z,lattice)

AZ's ResLib v2.1

7

Input arguments:
• lattice is as in star.m. It contnains all the lattice parametrs for this calculation. Alternatively, it

contains reciprocal-lattice parameters.
• x, y, z are fractional cell coordinates of a vector. Alternatively, they define the Miller indexes of a

reciprocal-lattice vector.

Output arguments:
The returned value is the vector's length.

Vectorization:
The function can be used to simultaneously calculate several lengths. For N calculations, x,y,z are
vectors of length N or scalars. Correspondingly, each field of lattice should be a vector of length N or a
scalar. The returned value will be a vector of length N as well.

Dependencies:
modvec.m relies on scalar.m.

Convolution with resolution function: general 4-D convolution
A neat trick suggested by Igor Zaliznyak is to replace the indefinite 4-D integral in Eq. 1 by an integral
over a 4D hypercube:

() ()� � � �Ω
σ π−

π−

π−

π−

π−

π−

π−

π−

ω=−
=−

ϕϕϕϕ

�
�

�
�
�

� ϕ−ϕ−ϕ−ϕ−
ϕϕϕϕ≈

2/

2/

2/

2/

2/

2/

2/

2/
4

2
3

2
2

2
1

2

4
2

3
2

2
2

1
2

432100

'EE
q'kk

coscoscoscos

tg
2
1tg

2
1tg

2
1tg

2
1exp

QSdddd
M
1QR

'dEd
d

0
0

��

�

���

(2)

where the new variables are defined as:

33

2
23

2222

33

2313
1212

22

2
12

33

2
13

1111

4
44

z,0z

1

11

2222

1223

33

13

2

2233

23
3

33
0

1

1122

12
2

22

y,0y

1

11

x,0x

M
MMM~

M
MMMM~

M~
M~

M
MMM~

tg
M
1qq

tg
M~

M~M
M~M

M
M

tg
M~M

Mtg
M
1

tg
M~M~

M~tg
M~
1qq

tg
M~
1qq

−=

−=

−−=

ϕ=−

ϕ
��
�

�
��
�

�
−

−ϕ−ϕ=ω−ω

ϕ−ϕ=−

ϕ=−

(3)

If this integral is evaluated numerically by asampling of integrand in a set of points uniformly distributed in
φ-space, the sampling points will be distributed according to a Lorenzian in q,ω-space. The widths of the
4D-Lorenzian will be determined by the resolution ellipsoid. More points will get sampled near the
resolution center, and less on the "tails". This allows one to achieve much better results with fewer
sampling points. Speeds up computation tremendously!

ConvRes.m

Numerically convolutes a user-supplied cross section function S(q,ω) (a separate m-file) with the Cooper-
Nathans resolution function in a given set of points in ω-q space. This process requires laborious
calculations and one always has to compromise between computation times and accuracy. The sharper the

AZ's ResLib v2.1

8

intrinsic features of S(q,ω), the more difficult it is to get an accurate result. In particular, if S has a singular
(single-mode) form, straightforward 4D convolution doesn't work at all. A work-around is to artificially
introduce some intrinsic width in the excitations. A much better approach is to use ConvResSMA.m,
described below. In fact, try to use ConvResSMA.m whenever possible, as it is much faster than
ConvRes.m.
ConvRes.m implements two algorithms of numerical integration. The "fixed-sampling" method samples
S(q,ω) on a fixed grid in φ-space. Alternatively, the Monte Carlo algorithm can be used, eliminating any
"structured" artifacts (a common problem with fixed sampling), but introduces "noise". MC is good for
simulations, but the irreproducible "noise" will confuse many least-squares fitting routines. For an example
of use see ConvDemo.m.

function conv=ConvRes(sqw,pref,H,K,L,W,EXP,METHOD,ACCURACY,p)

Input arguments:
• 'sqw' is the name of the user-supplied cross section. It must be defined in a separate m-file and have

the form:
function s=sqw(H,K,L,W,p,sample,rsample)
The arguments H, K and L specify the scattering vector in rec. lattice units, and W is the energy transfer
(in meV). p is an additional parameter that can be anything: a number, an array, a structure, or a cell
array. For convenience, lattice constants and reciprocal-lattice constants are passed of to sqw through
the structures sample and rsample for internal use. These two arguments have the same structure
as the lattice argument for star.m. sqw may or may not use the lattice constants, but must list as its
arguments. See SqwDemo.m for an example.
The function sqw must be vectorized, i.e., if H, K, L and W are vectors of length N, the output should
be a vector of values of the same length. Correspondingly, the fields in sample and rsample are
expected to vectors of length N as well: one set of lattice constants for each (h,k,l,ω) data point. Even
when some of the input arguments are vectrors of length N, others may be scalars, and in this case
should be treated as equivalents on length-N vectors of constant values.

• 'pref' is the name of a user-supplied function that acts as a prefactor to sqw and is assumed to vary
slowly with wave vector and energy. The actual structure factor S(q,ω) will be a product of sqw and
pref. Unlike sqw, pref will not be convoluted with the resolution function, to save computation
time. Typically, pref would include the magnetic form factor, absorption corrections or polarization
factors. If pref=[], then the structure factor will simply be as calculated by sqw. If used, the
function pref must be defined in a separate m-file and be of the same form as sqw. See
PrefDemo.m for an example.

• H, K, L and W specify the wave vector and energy transfers at which the convolution is to be calculated.
H, K and L are given in reciprocal lattice units, and W in meV.

• The structure EXP contains all the information on the sample and lattice parameters. It has the form
used with ResMatS.m, as described above.

• The string argument METHOD specifies which 4D-integration method to use. ACCURACY determines
the number of sampling points in the integration. The following options are available:

• METHOD='fix': Sample the cross section on a fixed grid of points uniformly distributed in
φ-space. If this option is chosen, 2*ACCURACY(1)+1 points are sampled along φ1, φ2 and
φ3, and 2*ACCURACY(2)+1 along φ4 (vertical direction).

• METHOD='mc': 4D Monte Carlo integration. The cross section is sampled in
1000*ACCURACY randomly chosen points, uniformly distributed in φ-space.

• The parameter p is passed on, without change, to sqw and pref. Very useful when you have a
parameterized cross section that you want to fit to actual data sets.

Output arguments:
conv is the calculated value of the cross section, folded with the resolution function, at the give H, K, L, W
position.

AZ's ResLib v2.1

9

Vectorization:
The code is vectorized with respect to H, K, L, W and EXP. It can be used to simultaneously calculate
convolutions at several ω-q points or even for several experimental setups. Any vectors among H, K, L, W W
and EXP must be of the same length. If any of these are scalars, they will be automatically replicated into
vectors of appropriate length. For input vectors of length N the result is, correspondingly, a length-N row-
vector of convolution values.

Dependencies:
To properly function ConvRes.m requires the following m-files from ResLib: ResMatS.m, ResMat.m,
StandardSystem.m, star.m, scalar.m, modvec.m.

Convolution with resolution function: single-mode and Voigt
profiles
In many cases the dynamic structure factor can be broken down into several single-mode contributions:

() () ()()qqsQS i

N

1i
i

��

�

ω−ωδ=�
=

(4)

Here si(q) is the intensity of the i-th mode, and ωi(q) is its dispersion relation. It may appear discouraging
that ConvRes.m becomes unusable in this case, as it can not handle infinitely sharp features of the cross
section. A work-around would be to artificially introduce finite energy-widths of excitations. A much better
approach is to eliminate the delta-functions analytically, reducing a 4-D numerical convolution to a much
faster 3-D convolution.
This procedure can be generalized to the case when each mode is characterized by some intrinsic Lorenzian
energy-width Γi(q):

() () ()
() ()[]2

i
2

i

i
N

1i
i qq

qqs1QS
��

�

�

�

ω−ω+Γ
Γ

π
= �

=

(5)

While a convolution of a Gaussian and a Lorentzian (so-called Voigt function) can not be computed
analytically, some very efficient numerical approximations are available [8] .
In either case, the φ-transformation is performed only in 3 dimensions. Exact expressions used in ResLib
are as follows:

() () ()

()

() () ()

33

2
23

2222

33

2313
1212

33

2
13

1111

3
44

z,0z

2

11
2
122211

12
1

11

x,0x

22
122211

11
y,0y

22
2

33

y23x13
ii

33
ii

N

1i

2/

2/

2/

2/

2/

2/
3

2
2

2
1

2

3
2

2
2

1
2

iii321

33
2
122211

00

'EE
q'kk

M
MMM~

M
MMMM~

M
MMM~

tg
M
1qq

tg
M~M~M~M~

M~tg
M~
1qq

tg
M~M~M~

M~
qq

xty
ytexpdt1y,xV

M
qMqM

q~

M
1~

coscoscos

tg
2
1tg

2
1tg

2
1exp

~,~Vqsddd
M~M~M~M~

1QR
'dEd

d

0
0

−=

−=

−=

ϕ=−

ϕ
−

−ϕ=−

ϕ
−

=−

−+
−

π
≡

+
+ω−ω=ω

Γ=Γ

ϕϕϕ

��

�
��

� ϕ−ϕ−ϕ−
Γωϕϕϕ

−
≈

�

� � � �Ω
σ

=

π−

π−

π−

π−

π−

π−

ω=−
=−

�

�

�

�

���

(6)

AZ's ResLib v2.1

10

[8] J. Humlicek, J. Q. Spec. Rad. Transfer 27, 437 (1982); F. Schreier,J. Q. Spec. Rad. Transfer 48, 743
(1992).

ConvResSMA.m
ConvResSMA.m is specifically designed to handle user-supplied cross section functions written is the
single-mode form. Having one dimension less to deal with, it is much faster than ConvRes.m and should
be used in its stead whenever possible. For an example of use see ConvDemo.m.

function conv=ConvResSMA(sqw,pref,H,K,L,W,EXP,METHOD,ACCURACY,p)

Input arguments:
• 'sqw' is the user-supplied cross section. It must be defined in a separate M-file and have the form:

function [w0,S,HWHM]=sqw(H,K,L,p,sample,rsample)
The input arguments are as those for the cross section function for ConvRes.m. See SMADemo.m for
an example. For M modes and N data points the output arguments are MxN matrixes. Fore mode j at
reciprocal-space point (hi,ki,li) s(j,i) is the mode intensity sj, w0(j,i) is mode energy ωj (in
meV) , and HWHM is the Lorenzian energy half-widths at half-height Γj. If HWHM=0, the mode is
assumed to have a d-function energy profile.
The function sqw must be vectorized, i.e., if H, K and L vectors of length N, the outputs should be
vectors of values of the same length. Correspondingly, the fields in sample and rsample are
expected to vectors of length N as well: one set of lattice constants for each (h,k,l,ω) data point. Even
when some of the input arguments are vectrors of length N, others may be scalars, and in this case
should be treated as equivalents on length-N vectors of constant values.

• 'pref' has a similar meaning to that in ConvRes.m. The difference is that it calculates a whole set of
prefactors, one for each mode defined by sqw. For M modes and N data points, it should return an
MxN matrix. It uses the same set of input arguments as sqw. See SMAPrefDemo.m for an example.

• H, K, L,W, p, and EXP have the same meaning and form as for ConvRes.m.
• The string argument METHOD specifies which 3D-integration method to use. ACCURACY determines

the number of sampling points in the integration. The following options are available:
• METHOD='fix': Sample the cross section on a fixed grid of points uniformly distributed in

φ-space. If this option is chosen, 2*ACCURACY(1)+1 points are sampled along φ1 and φ2,
and 2*ACCURACY(2)+1 along φ3 (vertical direction).

• METHOD='mc': 3D Monte Carlo integration. The cross section is sampled in
1000*ACCURACY randomly chosen points, uniformly distributed in φ-space.

Output arguments:
See output arguments for ConvRes.m.

Vectorization:
See vectorization of ConvRes.m.

Dependencies:
To properly function ConvResSMA.m requires the following m-files from ResLib: ResMatS.m,
ResMat.m, StandardSystem.m, star.m, scalar.m, modvec.m.

AZ's ResLib v2.1

11

Least-squares fitting of convoluted cross sections

FitConv.m
This function provides Levenberg-Marcquardt least squares fitting of convoluted cross secions to
experimental data. The algorith is exactly as in NR 15.5. Analytic derivatives are not supported in the
current version. This function calls ConvRes.m for convolution calcualtions at each iteration step. An
example of use is given in FitDemo.m.
The function call has the following form:
function [pa,dpa,chisqN,sim,CN,PQ,nit,kvg,details]
=FitConv(H,K,L,W,EXP,Iobs,dIobs,sqw,pref,pa,ia,METHOD,
ACCURACY,nitmax,tol,dtol)

Input arguments:
• 'sqw', 'pref', METHOD and ACCURACY are exactly as in ConvRes.m
• H, K, L, W, EXP are vectors that contain the wave vector components, energy transfers, and

experimental conditions for each experimental data point. They all must be of the same length or
scalars. See ConvRes.m for more details.

• Iobs, dIobs are vectors of the same length as H…EXP, and contain the observed scattering intensities
and error bars for each data point, respectively.

• pa is the initial guess for parameter values. This should be a 1-dimensional array of the form accepted
by the sqw and pref functions.

• ia (optional) - a list with zero elements corresponding to fixed parameters and ones for parameters
that should be varied. This array should be of the same size as pa. The default value is ia=ones.

• nitmax (optional)- the maximum number of iterations allowed before the program exits. The default
value is nitmax=20.

• tol (optional)- the convergence criterion: convergence declared when chi-squared decreases by a
relative amount less than tol. The default value is tol=0.001.

• dtol (optional)- parameter for relative change in numerical derivatives, default dtol=1e-5.

Output arguments:
• pa,dpa - refined parameters and error bars.
• chi2N - chi-squared normalized by degrees of freedom.
• CN - normalized correlation matrix - includes varying parameters only (in order).
• PQ - probability that chi2N exceeds that observed.
• nit - number of iterations to convergence.
• kvg - convergence flag:

kvg=0 did not converge due to too many iterations nit >= nitmax
kvg=1 converged normally
kvg=2 questionable convergence (final_lamda> 1e-3)

• sim - (optional) fitted value of convoluted cross section at input points
• details - optional output structure with fields:

• chisq (raw chi-squared)
• DF (degrees of freedom)
• Ndata (number of data points)
• Npar (total number of parameters)
• Nvar (number of parameters varied)
• C (raw covariance matrix)
• final_lamda (final value of λ used in the fitting process)
• yf (fitted values of function at input points)

AZ's ResLib v2.1

12

Dependencies:
To properly function FitConv.m requires the following m-files from ResLib: ConvRes.m,
ResMatS.m, ResMat.m, StandardSysem.m, star.m, modvec.m, scalar.m.

FitConvSMA.m

This function is very similar to FitConv.m, but uses SMA cross sections as in ConvResSMA.m.
The function call has the following form:
function [pa,dpa,chisqN,sim,CN,PQ,nit,kvg,details]
=FitConvSMA(H,K,L,W,EXP,Iobs,dIobs,sqw,pref,pa,ia,METHOD,
ACCURACY,nitmax,tol,dtol)

Input arguments:
'sqw', 'pref', METHOD and ACCURACY are exactly as in ConvResSMA.m
Other parameters as in FitConv.m.

Dependencies:
To properly function FitConvSMA.m requires the following m-files from ResLib: ConvResSMA.m,
ResMatS.m, ResMat.m, StandardSysem.m, star.m, modvec.m, scalar.m.

Graphic representations of resolution ellipsoids
It is often very helpful to visualize resolution ellipsoids for each point in an inelastic scan, see how they
change from one point to the next, and try to understand how they are oriented relative to the dispersion
surface in the system under investigation. Also, while the resolution matrix contains all the information on
the instrumental resolution at a given point, parameters such as resolution volume, projected energy width,
Bragg peak width, etc., are much more useful in planning actual measurements. ResLib provides two
routines for visualizing resolution ellipsoids and calculating the most relevant resolution parameters.

ResPlot.m
This function plots projections and sections of resolution ellipsoids for a user-defined scan, and calculates a
bunch of relevant resolution characteristics for the center-point of the scan. As an option, it also plots the
dispersion relation calculated from a user-supplied SMA cross section function, of the type used by
ConvResSMA.m. The projection and section planes for resolution ellipsoids are defined by the orienting
vectors specified in EXP. By changing these one can get projections and sections with any desired
reciprocal-space planes. An example of use can be found in PlotDemo.m. ResPlot.m has the following
form:

function ResPlot(H,K,L,W,EXP,SMA,SMAp)

Input arguments:
• H, K, L, W, EXP are vectors that contain the wave vector components, energy transfers, and

experimental conditions for each experimental data point. They all must be of the same length or
scalars. See ConvRes.m for more details. ResPlot.m is designed to work with a single scan,
measured in a particular experimental setup. Therefore, calculations for all scan points will be
performed using experimental conditions for the center-point of the vector EXP (center of scan).

• SMA (optional) is the name of an SMA cross section function to be used for are vectors of the same
length as H…EXP, and contain the observed scattering intensities and error bars for each data point,
respectively.

• SMAp (optional) - parameters to be passed to the cross section function.

AZ's ResLib v2.1

13

Output:
All the information is sent to the current figure. A typical output looks like this:

• Upper left: projection onto the scattering plane (large ellipses) and constant-energy sections (inner
ellipses).

• Lower left: Qx-E projections and sections. Additional lines (here: parabola) show the dispersion of the
two branches defined in the supplies SMA cross section function. The Qy and Qz values for this
dispersion curve are taken for the mid-point in the scan.

• Upper right: Qy-E projections and sections. Additional lines (here: straight lines)show the dispersion of
the two branches defined in the supplies SMA cross section function. The Qx and Qz values for this
dispersion curve are taken for the mid-point in the scan.

Dependencies:
To properly function PlotRes.m requires the following m-files from ResLib: ResMatS.m,
ResMat.m, StandardSysem.m, star.m, modvec.m, scalar.m.

ResPlot3D.m

This function is similar to ResPlot.m but plots a very neat 3D representation of resolution ellipsoids,
projections and dispersion surfaces. See Plot3DDemo.m for an example of use.

function ResPlot3D
(H,K,L,W,EXP,RANGE,EllipsoidStyle,XYStyle,XEStyle,YEStyle,SMA,SMAp,SXg,
SYg)

AZ's ResLib v2.1

14

Input arguments:
• H, K, L, W, EXP are as in ResPlot.m.
• RANGE defines the range of momentum and energy transfer to use in the plot. RANGE must be of the

form [Qxmin, Qxmax, Qymin, Qymax, Emin, Emax], in Å-1 and meV, respectively.
• EllipsoidStyle (optional) is the color of resolution ellipsoids in the plot. Default is

EllipsoidStyle='red'.
• XYStyle (optional) - line style to use for the projection onto the scattering plane, in the format used

with MatLab's plot command (something like 'r--' for a red dashed line). Use the value 'none'
to suppress projections.

• XEStyle (optional) - line style to use for the projection onto the Qx-E plane, in the format used with
MatLab's plot command. Use the value 'none' to suppress projections.

• YEStyle (optional) - line style to use for the projection onto the Qy-E plane, in the format used with
MatLab's plot command. Use the value 'none' to suppress projections.

• SMA and SMAp (both optional) are as in ResPlot.m.
• SXg and SYg (both optional) define the 2D grid of Qx and Qy values for plotting the dispersion

surfaces. They must be of the same form as used in MatLab's surf command, and as generated by
meshgrid. A good example of use is given in Plot3Ddemo.m. If omitted, the dispersion surface is
plotted of a 40x40 grid within the boundaries specified by the first 4 elements of RANGE.

Output:
All the information is sent to the current figure. A typical output looks like this:

Dependencies:
To properly function ResPlot3D.m requires the following m-files from ResLib: ResMatS.m,
ResMat.m, StandardSysem.m, star.m, modvec.m, scalar.m.

AZ's ResLib v2.1

15

Downloads, packaging and installation

File download
The most recent version of all ResLib files are available here for download as .zip or .tar.gz archives from
http://neutrons.phy.bnl.gov/ResLib.

Packaging:
ResMat.m - calculate Cooper-Nathans resolution matrixes.
ResMatS.m - same thing, in a coordinate system defined by the scattering vector.
ConvRes.m - convolute a user-defined cross-section function with the resolution. ConvResSMA.m -
convolute a user-defined single-mode cross-section with the resolution.
FitConv.m - fit convoluted cross section to experimental data.
FitConvSMA.m - fit convoluted SMA cross section to experimental data.
ResPlot.m - 2-D visualization of resolution ellipsoids and dispersion.
ResPlot3D.m - 3-D visualization of resolution ellipsoids and dispersion.
scalar.m - scalar product of vectors defined by fractional cell coordinates or Miller idexes.
modvec.m - length of vectors defined by fractional cell coordinates or Miller idexes.
star.m - calculate reciprocal-lattice parameters, unit cell volume and reciprocal volume.
StandardSystem.m - internal use.
MakeExp.m - Example of seting up a structure that contains details on experimental conditions for use
with ResMat and ConvRes.
SqwDemo.m - example of a user cross section function for use with ConvRes.
SMADemo.m - example of a user single-mode cross section function for use with ConvResSMA.
PrefDemo.m - example of a "slowly varying prefactor" function for use with ConvRes and SqwDemo.
SMAPrefDemo.m - example of a "slow prefactor" function for use with ConvResSMA and SMADemo.
ConvDemo.m - a demo script of the convolution routines.
FitDemo.m - a demo script of the fitting routines.
PlotDemo.m - a demo script of ResPlot
Plot3DDemo.m - a demo script for ResPlot3D
Demo.dat - an actual data set used in FitDemo
ResLib.m - list of functions supplied in ResLib.
Manual.pdf - this file.

Installation
Uncompress the archive to a separate new directory and add it to your MatLab path by using the addpath
command. Run the ConvDemo script to see that ResLib works on your system. Run the PlotDemo and
Plot3DDemo scripts to get some nice graphics. Change to the directory where the files are installed (to
have Demo.dat in the current directory) and try FitDemo. This last one may take a long time though…

Credits

Many ideas and entire code fragments are borrowed from IDL routines written at Johns Hopkins University
by Collin L. Broholm and Igor Zaliznyak (now at BNL). Other code fragments originally written by Peter
Boni at BNL (now at PSI) for the old-and-reliable BNL FIT3AX Fortran program. The resolution
calculation was tested against the very reliable Resolution program written at BNL for Macintosh by Ben
Sternlieb. Igor Zaliznyak helped in testing ResLib agains his own IDL routines. Levenberg-Marquardt
algorithm based on C Numerical Recipies, as adapted for MatLab by Stephen E. Nagler (ORNL). Voigt
function by A. N. Maurellis.

AZ's ResLib v2.1

16

Disclaimer
There obviously is no guarantee that the above routines work right. 3-axis resolution calculations are a
tricky business and have on many occasions led to incorrect interpretation of experimental data, outright
wrong publications, and destruction of glorious careers of young neutron scatterers. Use these m-files
freely... at your own risk.

